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1.1 COMBINATORICS

Let V be a finite nonempty set whose elements we will call vertices.

DEFINITION 1.1. A simplicial complex on V is a collection K of nonempty subsets of V
subject to two requirements:

• for each vertex v in V, the singleton {v} is in K, and
• if τ is in K and σ ⊂ τ then σ must also be in K.

The nonempty subsets which lie in a simplicial complex K are called the simplices of K. The
dimension of a simplex σ in K is defined to be

dim σ = #σ− 1,

where #σ denotes the cardinality of (or, the number of vertices contained in) σ. Thus, the sin-
gletons {v} all lie in K and have dimension zero, all pairs {v, v′} which happen to lie in K have
dimension one, and so forth. The dimension of K itself is given by taking a maximum over
constituent simplices, i.e.,

dim K = max{dim σ | σ ∈ K}.

We will write Ki to denote the set of all i-dimensional simplices in K; the first requirement of
Definition 1.1 guarantees that K0 equals the vertex set V. The figure below contains cartoon
depictions of a vertex set V with four elements, a simplicial complex K and a non-simplicial
complex K′ — the fact that the set {1, 2, 3} is present in K′ but the subset {1, 3} is not disqualifies
K′ from being a simplicial complex.

Here are some more exciting examples of simplicial complexes.

• Graphs: a (finite, undirected, simple) graph is a pair G = (V, E) consisting of a finite
set V (whose elements are called vertices as before) and a set E ⊂ V × V consisting
of distinct vertex-pairs, usually called edges. Every graph automatically forms a one-
dimensional simplicial complex K with V = K0 and E = K1.
• Solid Simplices: for each integer k ≥ 0, the solid k-simplex is the simplicial complex

∆(k) defined on the vertex set {0, 1, . . . , k} whose simplices are all possible subsets of
vertices.
• Hollow simplices: the hollow k-simplex (for each integer k ≥ 1) is denoted ∂∆(k)

and defined exactly like a solid k-simplex, except that we discard the unique (k + 1)-
dimensional simplex {v0, . . . , vk}. Thus, ∂∆(k) has dimension k− 1.

The figure below illustrates a graph, a solid 2-simplex and a hollow 2-simplex respectively.
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So far, the structure of a simplicial complex appears to be purely combinatorial — we are given
a universal finite set V of vertices, and we may select any collection K of subsets of V provided
that the two constraints of Definition 1.1 are satisfied. The first step towards expanding this
perspective beyond combinatorics is to formally relate simplices with their subsets.

DEFINITION 1.2. Given two simplices σ and τ of a simplicial complex K, we say that σ is a
face of τ, denoted σ ≤ τ, whenever every vertex of σ is also a vertex of τ.

Given a pair σ ≤ τ of simplices of a simplicial complex K, we call the difference dim τ−dim σ
the codimension of σ as a face of τ; note that the codimension is always a non-negative integer.

1.2 SUBCOMPLEXES, CLOSURES AND FILTRATIONS

Knowledge of face relations between simplices allows us to define subsets of simplicial com-
plexes which are simplicial complexes in their own right.

DEFINITION 1.3. Let K be a simplicial complex. A subset L ⊂ K of simplices is called a
subcomplex of K if it satisfies the following property: for each simplex τ in L, if σ is a face of τ
in K, then σ also belongs to L.

In general, for a subcomplex L ⊂ K, we do not require every vertex of K to be a vertex of L.

EXAMPLE 1.4. Each hollow k-simplex ∂∆(k) naturally forms a subcomplex of the corre-
sponding solid k-simplex ∆(k); each vertex of a given simplicial complex is automatically a
subcomplex.

If you are handed a collection K′ of simplices in some simplicial complex K, it is often desirable
to check how far K′ is from being a subcomplex of K. The following notion is often helpful when
performing such checks.

DEFINITION 1.5. The closure of a collection of simplices K′ in a simplicial complex K is de-
fined to be the smallest subcomplex L ⊂ K satisfying K′ ⊂ L.

Evidently, a nonempty subcollection K′ ⊂ K of simplices forms a subcomplex if and only if it
equals its own closure. It should be noted that the closure of a given collection K′ of simplices
can be much larger than K′. The following exercise is highly recommended: if σ is a single k-
dimensional simplex in a simplicial complex K, show that the closure of σ in K contains 2k − 1
simplices. Of particular interest to us here are ascending chains of subcomplexes.

DEFINITION 1.6. Let K be a simplicial complex; a filtration of K (of length n) is a nested
sequence of subcomplexes of the form

F1K ⊂ F2K ⊂ · · · ⊂ Fn−1K ⊂ FnK = K.
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In general, the dimensions of the intermediate FiK are not constrained by i. On the other hand,
in order to have a well-defined notion of length, we require FiK 6= Fi+1K for all i.

The figure below depicts a filtration of length four of the simplicial complex in the right-most
panel; the things to check are that each panel contains a genuine simplicial complex, and that
these simplicial complexes are getting strictly larger as we scan from left to right.

1.3 GEOMETRIC REALIZATION

The geometric simplex spanned by a collection of points {x0, x1, . . . , xk} in Rn is the closed
subset of Rn given by {

k

∑
i=0

tixi

∣∣∣ where ti ≥ 0 and
k

∑
i=0

ti = 1

}
.

These points {x0, . . . , xk} are said to be affinely independent if the collection of vectors

{(x1 − x0), (x2 − x0), . . . , (xk − x0)}
is linearly independent. There can, therefore, be at most (n + 1) affinely independent points in
Rn; the canonical example of such a set has x0 as the origin while xi for 0 < i ≤ n is the standard
basis vector with 1 in the i-th coordinate and zeros elsewhere.

DEFINITION 1.7. Let φ : K0 → Rn be any function that sends the vertices of K to points in
Rn. The geometric realization of K with respect to φ is the union

|K|φ =
⋃

σ∈K
|σ|φ,

where for each σ = {v0, . . . , vk} in K, the set |σ|φ ⊂ Rn is the geometric simplex spanned by the
points {φ(v0), . . . , φ(vk)}.

If we use a particularly degenerate φ : K0 → Rn, such as the map sending every vertex
to the origin, then the topological space |K|φ ⊂ Rn might be quite uninteresting and bear no
resemblance with K. We call φ : K0 → Rn an affine embedding of K in Rn if φ is injective (i.e.,
it sends different vertices to different points) and if its image φ(K0) is affinely independent. It
turns out that the topology of |K|φ is independent of the choice of φ provided that we stay within
the realm of affine embeddings.

PROPOSITION 1.8. For any two affine embeddings φ, ψ : K0 → Rn, there is a homeomorphism
|K|φ ' |K|ψ between the corresponding geometric realizations.

PROOF. Let K0 = {v0, . . . , vk} be the vertex set of K; for each i in {1, . . . k} define the following
sets of vectors in Rn

xi = φ(vi)− φ(v0) and yi = ψ(vi)− ψ(v0).
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Since the vectors {xi} and {yi} are linearly independent by our assumption on φ and ψ, they
each span (possibly distinct) k-dimensional subspaces of Rn. Thus, there is an invertible n× n
matrix M sending xi to yi for each i, and this M maps |K|φ to |K|ψ homeomorphically. �

In light of the preceding result, we will usually write the geometric realization of a simplicial
complex K as |K|, and omit any mention whatsoever of the affine embedding φ. It is often
convenient to use the endpoints of standard basis vectors in Rn as targets of the vertices — this
ensures, for instance, that every simplicial complex K has a geometric realization embeddable in
Rn for n = #K0. The figure below depicts the geometric realizations of the solid simplices ∆(1)
and ∆(2) with respect to this standard basis embedding.

The geometric realization |∆(k)| is homeomorphic to a k-dimensional disk while the real-
ization of ∂∆(k) is a homeomorphic to the (k − 1)-dimensional sphere. Geometric realizations
allow us to look beyond the combinatorial aspects of simplicial complexes and seek structure in
the geometry and topology of their realizations. They also provide a rigorous justification for
depicting simplices of dimension 0, 1, 2, 3, . . . as points, lines, triangles, tetrahedra, and so forth.

1.4 SIMPLICIAL MAPS

Let K and L be simplicial complexes.

DEFINITION 1.9. A simplicial map f : K → L is an assignment K0 → L0 of vertices to
vertices which sends simplices to simplices. So for each simplex σ = {v0, . . . , vk} of K, the
image f (σ) = { f (v0), . . . , f (vk)}must be a simplex of L.

It is important to note that f as defined above may not be injective, so in general we allow
f (vi) = f (vj) even when vi 6= vj. Thus, we only have an inequality dim f (σ) ≤ dim σ.

EXAMPLE 1.10. Whenever L ⊂ K is a subcomplex, the inclusion map K ↪→ L sends each
simplex of L to the same simplex in K. In the special case L = K, this inclusion is called the
identity map of K. All such inclusion maps are injective by definition. At the other end of
the spectrum, there is a unique surjective simplicial map K � •, where • denotes the trivial
simplicial complex with only one vertex — so every simplex of K is sent to this single vertex!

One can compose simplicial maps in a straightforward way — given f : K → L and g : L →
M, the composite g ◦ f : K → M sends each simplex σ of K to the simplex g( f (σ)) of L. We call
the simplicial map f : K → L an isomorphism if there exists an inverse, i.e., a simplicial map
g : L → K so that the composites g ◦ f and f ◦ g are the identity maps of K and L respectively.
Simplicial maps induce honest continuous maps between geometric realizations, which behave
as well as one might expected, as described in the following result.

PROPOSITION 1.11. For any simplicial map f : K → L,
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(1) there is an indued continuous function | f | : |K| → |L| between geometric realizations so that
for each simplex σ in K, the geometric simplex | f (σ)| ⊂ |L| is exactly the image under | f | of
the geometric simplex |σ| ⊂ |K|; and moreover,

(2) if we have a second simplicial map g : L→ M, then |g ◦ f | and |g| ◦ | f | coincide as continuous
maps |K| → |M|.

The proof of both statements is a reasonable exercise once we explain how to construct | f |
from f . Let φ : K0 → Rm and ψ : L0 → Rn be any affine embeddings. Now each point x in
|K| = |K|φ can be uniquely written as a linear combination x = ∑i ti · φ(vi) where vi ranges over
all the vertices of K and the ti are non-negative real numbers satisfying ∑i ti = 1. The image
| f |(x) of this point in |L| = |L|ψ is then given by the formula

| f |(x) = ∑
i

ti · ψ ◦ f (vi). (1)

If you restrict this map to the realization of a single simplex |σ|φ ⊂ |K|φ, you will discover that
| f | is an honest linear map onto the realization of the image simplex | f (σ)|ψ ⊂ |L|ψ. For this
reason, such continuous maps are called piecewise-linear, and their study forms a rich subject
in its own right.

One natural question that you might ask is when two simplicial complexes K and L produce
homeomorphic geometric realizations |K| and |L|. It is a consequence of Proposition 1.8 that any
simplicial isomorphism f : K → L induces a homeomorphism | f | between |K| and |L|— but in
general |K| and |L| can be homeomorphic even if there is no simplicial isomorphism relating K
to L. We will describe examples of this phenomenon in the next section.

1.5 BARYCENTRIC SUBDIVISION

Let K be a simplicial complex.

DEFINITION 1.12. The barycentric subdivision of K is a new simplicial complex Sd K defined
as follows; for each dimension i ≥ 0, the i-dimensional simplices are given by all sequences

σ0 < σ1 < · · · < σi−1 < σi

of (distinct) simplices in K ordered by the face relation.

This definition is liable to cause confusion until we see what barycentric subdivision looks
like geometrically. The figures below depict (some) barycentric simplices within the geometric
realizations of the solid simplices ∆(1) and ∆(2) as well as the hollow 3-simplex ∂∆(3).

In light of these figures, it is clear that the geometric realizations |K| and |Sd K| agree for
every simplicial complex K; we record this not-too-surprising fact below.

PROPOSITION 1.13. For any simplicial complex K, there is a homeomorphism between geometric
realizations |K| and |Sd K|.
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You can check just by counting simplices across various dimensions that for non-trivial K
there can be no simplicial isomorphism K → Sd K. Since Sd K is itself a simplicial complex, it can
be further barycentrically subdivided. We refer to this second barycentric subdivision as Sd2 K =
Sd(Sd K), and similarly define Sdn K for all larger n. By Proposition 1.13, all the geometric
realizations |Sdn K| are homeomorphic regardless of n ≥ 1, even though there are no simplicial
isomorphisms which induce these homeomorphisms.

1.6 FILTRATIONS FROM DATA

By data here we mean a finite set of observations with a well-defined notion of pairwise dis-
tance, with the typical example being a finite collection of points in Rn equipped with the stan-
dard Euclidean distance. But in general such observations might not come with any embedding
into Euclidean space. One common example is furnished by dissimilarity matrices — given a
set of observations O1, . . . , Ok, one can often build a k× k symmetric matrix whose entry in the
(i, j)-th position measures the difference between Oi and Oj. Here is a convenient mathematical
framework which encompasses all notions of datasets that are relevant to us here.

DEFINITION 1.14. A metric space (M, d) is a pair consisting of a set A and a function

d : M×M→ R,

called the metric, satisfying four properties:
(1) identity: d(x, x) = 0 for each x in M,
(2) positivity: d(x, y) > 0 for each x 6= y in M,
(3) symmetry: d(x, y) = d(y, x) for all x, y in M, and most importantly,
(4) triangle inequality: d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z in M.

When the metric is clear from context, we will denote the metric space simply by M; this hap-
pens, for instance, when M is a a subset of some Euclidean space Rn. In this case, d(x, y) is
understood to be the Euclidean distance ‖x− y‖ for all x and y in M. In fact, any subset A ⊂ M
of an ambient metric space (M, d) is automatically given the structure of a metric space in its
own right, since we can simply restrict d to A× A.

One fundamental idea behind topological data analysis is best viewed by considering the
special case where M is a finite collection of points in the Euclidean space Rn. For such point
clouds, there is a well-defined notion of thickening by any scale ε > 0 — namely, M+ε is the union
of ε-balls in Rn around the points of M. Various thickenings are illustrated in the figure below.
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The hope is to better understand the geometric structure of M across various scales. One ob-
stacle in this quest is that the union of balls M+ε is a remarkably inconvenient object from the
perspective of designing algorithms — for instance, if you were given a set of points M ⊂ R2

and a scale ε > 0, how would you program a computer to determine whether or not M+ε was
connected? To address such questions, one replaces unions of balls by filtrations of simplicial
complexes (which we encountered in Definition 1.6). There are two common choices of filtra-
tions — Vietoris-Rips and Čech.1

DEFINITION 1.15. Let (M, d) be a finite metric space. The Vietoris-Rips filtration of M is an
increasing family of simplicial complexes VRε(M) indexed by the real numbers ε ≥ 0, defined
as follows:

a subset {x0, x1, . . . , xk} ⊂ M forms a k-dimensional simplex in VRε(M) if and
only if the pairwise distances satisfy d(xi, xj) ≤ ε for all i, j.

The astute reader may have noticed that we are indexing the simplicial complexes in this fil-
tration by real numbers ε ≥ 0 rather than finite subsets of the form {1, 2, . . . , n} as demanded
by Definition 1.6. The disparity between the two scenarios is artificial — since we have assumed
that M is finite, there are only finitely many pairwise distances d(x, y) encountered among the el-
ements of M, so there are only finitely many ε values where new simplices are added to VRε(M).
Those who have not met Vietoris-Rips filtrations before can get better acquainted by verifying
the following facts:

(1) the set VRε(M) is a simplicial complex for each ε > 0,
(2) the elements of M are vertices of each such VRε(M), and
(3) for any pair 0 ≤ ε ≤ ε′ of real numbers, VRε(M) is a subcomplex of VRε′(M).

We will see an example of a Vietoris-Rips filtration shortly; first let us examine the Čech alterna-
tive.

DEFINITION 1.16. Let M be a finite subset of a metric space (Z, d). The Čech filtration of M
with respect to Z is the increasing family of simplicial complexes Cε indexed by ε ≥ 0 defined :

a subset {x0, x1, . . . , xk} ⊂ M forms a k-dimensional simplex in Cε(M) if and
only if there exists some z in Z satisfying d(z, xi) ≤ ε for all i.

Although the larger metric space Z plays a starring role in deciding when a simplex lies inside
Cε(M), it is customary to suppress it from the notation (in any case the typical scenario is Z = Rn

with the Euclidean metric). This blatant dependence on Z is the biggest immediate difference
between Čech filtrations and Vietoris-Rips filtrations — the Vietoris Rips filtration can be defined
directly from knowledge of the metric on M whereas the Čech filtration can not.

To examine the key differences between these two filtrations, consider the three-element met-
ric space (M, d) illustrated below.

1This is pronounced “check”.
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The Vietoris Rips filtration of M at all scales ε ≥ 0 is given by the following lists of simplices:

VRε(M) =


{x0, x1, x2} 0 ≤ ε < 1
{x0, x1, x2, x0x1} 1 ≤ ε < 2
{x0, x1, x2, x0x1, x0x2} 2 ≤ ε < 2.5
{x0, x1, x2, x0x1, x0x2, x1x2, x0x1x2} ε ≥ 2.5

It is crucial to note that the edge x0x2 and the 2-simplex x0x1x2 enter the filtration at exactly the
same scale, i.e., ε = 2.5. Let us now contrast this with the Čech filtration for the same M, but
now viewed as a subset of three points in the Euclidean plane R2. Here, the edge x0x2 and the
2-simplex x0x1x2 will not appear simultaneously. Let r > 0 be the radius of the smallest ball
which encloses all three points, like so:

The Čech filtration of M as a subset of R2 is given by

Cε(M) =



{x0, x1, x2} 0 ≤ ε < 0.5
{x0, x1, x2, x0x1} 0.5 ≤ ε < 1
{x0, x1, x2, x0x1, x0x2} 1 ≤ ε < 1.25
{x0, x1, x2, x0x1, x0x2, x1x2} 1.25 ≤ ε < r
{x0, x1, x2, x0x1, x0x2, x1x2.x0x1x2} ε ≥ r

Determining the radii of smallest enclosing balls (such as r above) is quite challenging algo-
rithmically, which is why Vietoris-Rips filtrations are substantially easier to compute. On the
other hand, the advantage of the Čech filtration is that it happens to be far more faithful to the
underlying geometry of the union of balls M+ε which we sought to approximate in the first
place. For instance, given the union of ε-balls shown below, the Vietoris-Rips complex at scale
2ε is the solid 2-simplex (which fails to detect the hole) whereas the Čech filtration at scale ε
equals the far more appropriate hollow 2-simplex.

We will study this phenomenon much more carefully in the next Chapter.
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1.7 BONUS: LOCAL GEOMETRY

The three notions introduced in this section (stars, links and cones) appear in the exercises of this Chapter and
are invoked frequently in subsequent Chapters; but Theorem 1.20 below is not used anywhere else in this text.

Throughout this section, we fix a simplicial complex K as in Definition 1.1; our goal here is to
describe the neighborhood of a given simplex σ in (the geometric realization of) K. The first step
is to identify all the simplices which admit σ as a face.

DEFINITION 1.17. The open star of σ in K is the collection of simplices

stK(σ) = {τ in K | σ ≤ τ} .

When the ambient simplicial complex K is clear from context (as it should be here), we simply
denote the open star of each simplex σ by st(σ) rather than dragging K around in the subscript.
The first panel below depicts (a part of) the geometric realization of a 2-dimensional simplicial
complex; the open stars of the highlighted vertex v and edge e are shown in the next two panels
(hollow vertices and dashed edges are not included).

Clearly, the open star of σ describes a small simplicial neighborhood of σ in the geometric
realization of K. Since st(σ) always contains σ, it is guaranteed to be non-empty — but as visible
even in the simple examples drawn above, open stars are rarely subcomplexes of K since they
tend to contain simplices without containing all of their faces. Passing to the closure of st(σ) as
described in Definition 1.5 produces a bona fide subcomplex st(σ) ⊂ K, called the closed star of
σ. Another useful subset of K that describes the local geometry of σ is called the link.

DEFINITION 1.18. The link of σ in K is the collection lkK(σ) of all simplices τ in K which
simultaneously satisfy both τ ∪ σ ∈ K and τ ∩ σ = ∅.

Unlike open stars, links of simplices in K might be empty (for example, the link of a top-
dimensional simplex is always empty). But if the link of σ is non-empty, then it must be a
subcomplex of K. Here are the links of the vertex v and edge e whose open stars we examined
in the previous figure.

The final piece of the puzzle is the notion of a cone over a simplicial complex.
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DEFINITION 1.19. The cone over K is a simplicial complex Cone(K) defined on the vertex set
K0 ∪ v∗, where v∗ is a new vertex not already present in K0. For d > 0, a d-simplex of Cone(K)
is either a d-simplex of K itself, or it is v∗ adjoined with a (d− 1)-simplex of K.

The reason this is called a cone becomes evident if one tries to draw the geometric realiza-
tion of Cone(K) when K’s geometric realization is homeomorphic to a cicle — you are strongly
encouraged to try drawing the cone over a hollow 2-simplex. Finally, here is the result which
describes neighbourhoods of simplices in every simplicial complex.

THEOREM 1.20. For any simplex σ in a simplicial complex K, there is a homeomorphism

|stK(σ)| ' |Cone(lkK(σ)| × [0, 1]dim σ.

The left side here is the geometric realization of σ’s closed star in K while the right side is a product
of the geometric realization of σ’s link with the closed unit cube in Rdim σ.

Thus, the smallest simplicial neighborhood around σ in K (i.e., the closed star of σ) always
decomposes into a product of the cone over the link of σ with Euclidean space of dimension
dim σ. Here is an illustration of this product structure in the special case where σ is a 1-simplex
that happens to be a face of three 2-simplices.

EXERCISES

EXERCISE 1.1. For each pair i ≤ k of non-negative integers, how many faces of codimension
i does the solid k-simplex ∆(k) have?

EXERCISE 1.2. Show that the face relations between simplices in a finite simplicial complex
satisfy the axioms of a partially ordered set.

EXERCISE 1.3. Show that the set of all subcomplexes of a finite simplicial complex K satisfy
the axioms of a partially ordered set when ordered by containment L ⊂ L′.

EXERCISE 1.4. Either prove the following, or find a counterexample: if K is a simplicial com-
plex and L ⊂ K a subcomplex with L 6= K, then the complement K − L is also a subcomplex
of K.

EXERCISE 1.5. Let K be a k-dimensional simplicial complex, and for each dimension i in
{0, 1, . . . , k} let ni be the number of i-simplices in K. How many i-simplices does the barycen-
tric subdivision Sd K have for each dimension i?
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EXERCISE 1.6. Let M be a finite metric subspace of an ambient metric space (Z, d). Show,
for each ε > 0, that the associated Čech complex Cε(M) is a subcomplex of the Vietoris-Rips
complex VR2ε(M). Then, show that – no matter what Z we had chosen – this VR2ε(M) is itself
a subcomplex of C2ε(M).

EXERCISE 1.7. Let M be a finite subset of points in Euclidean space Rn (with its standard
metric). As a function of n, can you find the smallest δ so that VRε(M) is always a subcomplex
of Čδ(M)? [Here the Čech complex has been constructed with respect to the ambient Euclidean
space Rn]

EXERCISE 1.8. If σ and τ are a pair of simplices in a simplicial complex K satisfying σ ≤ τ,
show that st(σ) ⊃ st(τ) and lk(σ) ⊃ lk(τ).

EXERCISE 1.9. Show that if the link lk(σ) of a simplex σ in a simplicial complex K is non-
empty, then lk(σ) is a subcomplex of K.

EXERCISE 1.10. Let σ be a simplex in a simplicial complex K. Show that a simplex τ lies in
lkK(σ) if and only if the following condition holds: the open stars of σ and τ have a non-trivial
intersection and σ and τ have no common faces.


